Correlated Psychological Variables, Uncertainty, and Bayesian Estimation

Assessing the correlations between psychological variabless, such as abilities and improvements, is one essential goal of psychological science. However, psychological variables are usually only available to the researcher as estimated parameters in mathematical and statistical models. The parameters are often estimated from small samples of observations for each research participant, which results in uncertainty (aka sampling error) about the participant-specific parameters. Ignoring the resulting uncertainty can lead to suboptimal inferences, such as asserting findings with too much confidence. Hierarchical models alleviate this problem by accounting for each parameter’s uncertainty at the person- and average levels. However, common maximum likelihood estimation methods can have difficulties converging and finding appropriate values for parameters that describe the person-level parameters’ spread and correlation. In this post, I discuss how Bayesian hierarchical models solve this problem, and advocate their use in estimating psychological variables and their correlations.

Visualizing varying effects' posteriors with joyplots

You should probably use ‘joy plots’ to visualize varying effects’ posteriors, because they look great.

On bayesian data analysis and bayes factors

It appears that there is an imbalance in what many beginning bayesian data analysts think about BDA. From casual observation and discussions, I’ve noticed a tendency for people to equate bayesian methods with computing bayes factors; that is, testing (usually null) hypotheses using bayesian model comparison.

Bayes Factors with brms

How to calculate Bayes Factors with the R package brms (Buerkner, 2016) using the Savage-Dickey density ratio method (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).

Better forest plots from meta-analytic models estimated with brms

An R function for drawing forest plots from meta-analytic models estimated with the brms R package.

How to Compare Two Groups with Robust Bayesian Estimation Using R, Stan and brms

2017 will be the year when social scientists finally decided to diversify their applied statistics toolbox, and stop relying 100% on null hypothesis significance testing (NHST). A very appealing alternative to NHST is Bayesian statistics, which in itself contains many approaches to statistical inference. In this post, I provide an introductory and practical tutorial to Bayesian parameter estimation in the context of comparing two independent groups’ data.